Excited Random Walk in a Markovian Environment
نویسنده
چکیده
One dimensional excited random walk has been extensively studied for bounded, i.i.d. cookie environments. In this case, many important properties of the walk including transience or recurrence, positivity or non-positivity of the speed, and the limiting distribution of the position of the walker are all characterized by a single parameter δ, the total expected drift per site. In the more general case of stationary ergodic environments, things are not so well understood. If all cookies are positive then the same threshold for transience vs. recurrence holds, even if the cookie stacks are unbounded. However, it is unknown if the threshold for transience vs. recurrence extends to the case when cookies may be negative (even for bounded stacks), and moreover there are simple counterexamples to show that the threshold for positivity of the speed does not. It is thus natural to study the behavior of the model in the case of Markovian environments, which are intermediate between the i.i.d. and stationary ergodic cases. We show here that many of the important results from the i.i.d. setting, including the thresholds for transience and positivity of the speed, as well as the limiting distribution of the position of the walker, extend to a large class of Markovian environments. No assumptions are made about the positivity of the cookies.
منابع مشابه
Random Walk in Markovian Enviroment
We prove a quenched central limit theorem for random walks with bounded increments in a randomly evolving environment on Zd. We assume that the transition probabilities of the walk depend not too strongly on the environment and that the evolution of the environment is Markovian with strong spatial and temporal mixing properties.
متن کاملExcited Random Walk in Three Dimensions Has Positive Speed
Excited random walk is a model of a random walk on Z which, whenever it encounters a new vertex it receives a push toward a specific direction, call it the “right”, while when it reaches a vertex it “already knows”, it performs a simple random walk. This model has been suggested in [BW] and had since got lots of attention, see [V, Z]. The reason for the interest is that it is situated very natu...
متن کاملNon-perturbative Approach to Random Walk in Markovian Environment. Dmitry Dolgopyat and Carlangelo Liverani
We prove an averaged CLT for a random walk in a dynamical environment where the states of the environment at different sites are independent Markov chains.
متن کاملNon–Perturbative Approach to Random Walk in Markovian Environment
We prove an averaged CLT for a random walk in a dynamical environment where the states of the environment at different sites are independent Markov chains.
متن کاملar X iv : m at h / 07 02 10 0 v 1 [ m at h . PR ] 5 F eb 2 00 7 RANDOM WALK IN MARKOVIAN ENVIROMENT
We prove a quenched central limit theorem for random walks with bounded increments in a randomly evolving environment on Z d. We assume that the transition probabilities of the walk depend not too strongly on the environment and that the evolution of the environment is Markovian with strong spatial and temporal mixing properties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016